## Applying Euler's Method to a second order ODE

A general second ordinary differential equation<sup>1</sup>:

$$\frac{d^2x}{dt^2} + a(t,x)\frac{dx}{dt} + b(t,x)x = f(t,x)$$
(1)

can be converted to a first order system

$$\underline{\dot{X}} = \begin{bmatrix} 0 & 1 \\ -b(t,x) & -a(t,x) \end{bmatrix} \underline{X} + \underline{F}$$
(1)

where  $\underline{X} = \begin{bmatrix} x \\ y \end{bmatrix}$ ,  $\underline{\dot{X}} = \begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix}$ ,  $\underline{F} = \begin{bmatrix} 0 \\ f(t,x) \end{bmatrix}$  and  $y = \frac{dx}{dt}$ .

In any t-interval  $t_{n-1} \le t \le t_n$  Euler's method advances the solution  $\underline{X}$  from  $\underline{X}_{n-1} \approx \underline{X}(t_{n-1})$  to  $\underline{X}_n \approx \underline{X}(t_n)$  through approximating  $\underline{\dot{X}} \approx \frac{\underline{X}_n - \underline{X}_{n-1}}{k}$ .

Substituting this back into (1) gives

$$\frac{\underline{X}_n - \underline{X}_{n-1}}{k} = \begin{bmatrix} 0 & 1 \\ -b_{n-1} & -a_{n-1} \end{bmatrix} \underline{X}_{n-1} + \underline{F}_n ,$$

where  $a_{n-1} = a(t_{n-1}, x_{n-1})$ 

Making  $\underline{X}_n$  the subject gives the following relation:

$$\underline{X}_{n} = \underline{X}_{n-1} + k \begin{bmatrix} 0 & 1 \\ -b_{n-1} & -a_{n-1} \end{bmatrix} \underline{X}_{n-1} + \underline{kF}_{n} .$$

This may also be written as two simultaneous equations:

$$x_{n} = x_{n-1} + ky_{n-1}$$
$$y_{n} = y_{n-1} - kb_{n-1}x_{n-1} - ka_{n-1}y_{n-1} + kf_{n-1}$$

The equation (1) is demonstrated on a spreadsheet  $(Excel)^2$ .

<sup>&</sup>lt;sup>1</sup> Ordinary Differential Equations

<sup>&</sup>lt;sup>2</sup> Solving a second order ODE on Excel Spreadsheet