Numerical Methods Library in Excel VBA

Module	LUfbsub.bas
Title	Forward and back substitution for real systems.
Description	LU factorisation of a square $n \times n$ matrix A is normally produces the lower-triangular matrix L, the upper triangular matrix (with diagonal elements set to 1) U and the permutation matrix P. such that
	PA = LU
	And the permutation matrix is stored as an integer n-vector, which simply records the positions of the 1s in each column (or row) of the permutation matrix. An example of the LU factorisation algorithm is <u>LUfac.bas</u> and this subroutine can be used directly on its results.
	One of the most important reasons for LU factorisation is for the solution of linear systems of equations or matrix-vector systems of the form
	$A \underline{x} = \underline{b}$.
	The factorisation allows us to write LU $\underline{x} = P \underline{b}$, which can be solved straightforwardly using forward and back substitution.
	The forward and back substitution method is implemented by LUfbsub.bas. The forward and back substitution is an $O(n^2)$ and the LU factorisation is $O(n^2)$; the forward and back substitution is computationally less intense than the LU factorisation and hence the strategy is that the LU factorisation, once computed, may be re-used for various vectors <u>b</u> .
Interface	Sub LUfbsub(a, n, perm, b) real a: on input the nxn matrix A, on output L and U integer n: the dimension of the matrix/vector integer perm: an n-vector, the column index of the permutation matrix P real b: the vector b
	Note the input matrix 'a' is such that the diagonal and upper-triangular elements is the 'U' matrix and the lower-triangular elements together with 1s on the diagonal is the matrix 'U'. On exit the <u>b</u> is overwritten by the solution ' <u>x</u> '.
Web source of code.	www.numerical-methods.com/ExcelVBA/LU.xlsm
	(key 'Developer' then 'Visual Basic' and then 'LUbfsub_module')

Web source of this guide	www.numerical-methods.com/Excel_VBA/LUfac_bas.htm
Web source of the algorithm	www.numerical-methods.com/lineq/LU Factorisation.htm
Dependent routines	NONE
Test problems	The Excel file contains spreadsheet test programs that demonstrate the forward and back substitution method of either a set of test matrix-vector systems of various dimensions or a chosen matrix/vector. <u>www.numerical-methods.com/ExcelVBA/LU.xlsm</u> The test problems are similar to those used in Matlab/Freemat/Octave Scilab <u>www.numerical-methods.com/mfiles/LUfbsub_tests.htm</u> and in FORTRAN <u>www.numerical-methods.com/fortran/CLUTESTS_FOR.htm</u>
Licence	This is 'open source'; the software may be used and applied within other systems or re-published as long as its provenance is appropriately acknowledged. See the <u>GNU Licence</u> for more information or contact <u>webmaster@numerical-methods.com</u>
Similar codes that may be of interest	LUFBSUB, <u>www.numerical-methods.com/fortran/LUFBSUB_FOR.htm</u> , LUfbsub.bas, <u>www.numerical-metods.com/Excel_VBA/LU.xlsm</u> For the method in visual basic / VBA (Excel), but only for real systems.
Bibilography	Linear Systems and 2x2 Matrices www.numerical-methods.com/lineq/LU Factorisation.htm Tutorials on Fortran77 Numerical Methods